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Figure 1: (a–b) Two images of street-level image-based navigation, using a single captured panorama: both views are away from the original
position of the photo. View (a) is most likely perceived as not distorted, while view (b) is perceived to be very distorted. We extended vision
science theories on picture perception to predict perceived distortion for such scenes. We designed and ran an experiment (c) to measure
perceived distortion. The results are used in an interactive application (d) to predict the quality of images: blue zones in the inset are regions in
which the user can navigate without seeing distortions. Capture cameras are represented by black icons, virtual cameras by blue icons.

Abstract

Image-based rendering (IBR) creates realistic images by enriching
simple geometries with photographs, e.g., mapping the photograph
of a building façade onto a plane. However, as soon as the viewer
moves away from the correct viewpoint, the image in the retina
becomes distorted, sometimes leading to gross misperceptions of the
original geometry. Two hypotheses from vision science state how
viewers perceive such image distortions, one claiming that they can
compensate for them (and therefore perceive scene geometry reason-
ably correctly), and one claiming that they cannot compensate (and
therefore can perceive rather significant distortions). We modified
the latter hypothesis so that it extends to street-level IBR. We then
conducted a rigorous experiment that measured the magnitude of
perceptual distortions that occur with IBR for façade viewing. We
also conducted a rating experiment that assessed the acceptability of
the distortions. The results of the two experiments were consistent
with one another. They showed that viewers’ percepts are indeed
distorted, but not as severely as predicted by the modified vision
science hypothesis. From our experimental results, we develop a
predictive model of distortion for street-level IBR, which we use to
provide guidelines for acceptability of virtual views and for capture
camera density. We perform a confirmatory study to validate our
predictions, and illustrate their use with an application that guides
users in IBR navigation to stay in regions where virtual views yield
acceptable perceptual distortions.
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1 Introduction

Image-based rendering (IBR) provides realistic 3D imagery with a
few photographs as input [Shum et al. 2006], thus avoiding the man-
ual and time-consuming content creation pipeline of traditional com-
puter graphics. Recent street-level navigation systems (e.g., Google
Maps Street View™ [Vincent 2007], Bing Maps Streetside™, or
Mappy Urban Dive™) use a simple form of IBR consisting of
a panorama and piecewise planar approximations of the ground
and building façades. Despite their simplicity, such systems create
reasonably compelling 3D experiences: we will refer to these as
street-level IBR. However, the resulting images are only correct
when viewed from where the original photographs were taken; when
moving away from this point, distortions can become quite large, as
shown in Fig. 1(b). Because of this, such systems typically restrict
viewers to be near one of the capture points.

Two terms are important for understanding the images created in
street-level IBR and users’ perceptions of those images. Image dis-
tortion refers to retinal images (in picture viewing) that are not the
same as the images created when viewing the original 3D scenes.
Such distortions can occur because the displayed image is distorted
and/or because the viewer is not positioned at the center of projec-
tion (COP). Perceptual outcome refers to the viewer’s perception
derived from the retinal image.

A key insight in our work is to make the link between distortions in
street-level IBR and what studies of human vision tell us about the
resulting perceptual outcomes. The vision science literature provides
two useful hypotheses concerning the perception of pictures: the
scene hypothesis and the retinal hypothesis. The scene hypothesis
states that viewers compensate for incorrect viewing position, so
the perceptual outcome is much closer to the original 3D scene than
dictated by the distorted retinal image. To understand this, note that
the viewer must be positioned at the picture’s center of projection
for the retinal image to be a faithful copy of the image that would be
created by viewing the original 3D scene. The retinal hypothesis, on
the other hand, states that viewers do not compensate for incorrect
position; rather the perceptual outcome is dictated by the distorted
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retinal image. Vision science literature, reviewed in Sec. 2, shows
that each hypothesis is valid, but for different contexts.

The situation is more complex in street-level IBR. In these systems,
an image is first captured by photographing a façade from a given
position. This image is then projected onto simplified geometry, like
a 3D polygon. The 3D polygon is in turn viewed from a new camera,
and projected into 2D to form the final image. Distortions occur
because the new camera has a different COP than the one associated
with the original photograph. Such situations have not been studied
extensively in vision science, but a similar case arises in pictures
within pictures [Pirenne 1970]. When a photograph within the pho-
tograph is slanted, there are two COPs, one for the photographed 3D
scene (that COP is usually on the central surface normal) and one
for the slanted photograph within the scene (that COP is not on the
central surface normal). Viewers can compensate for their incorrect
position with respect to the first COP, but are generally unable to
compensate for incorrect position with respect to the second COP.
Thus, compensation occurs for pictures created with one camera
and not for content created by a second camera. Street-level IBR
creates both of these scenarios. We will use concepts from vision
science to understand how image distortions created in street-level
IBR systems are perceived and thereby to determine how best to
create such imagery without objectionable perceptual distortions.

We make three primary contributions:

• We modify the retinal hypothesis to extend it to street-level IBR.
The quantitative model that emerges from this modification uses
perspective information to generate predicted 3D percepts.

• In two perceptual experiments, we determine how well the ex-
tended retinal and scene hypotheses predict perceptual outcomes.
We find that outcomes fall in-between the two predictions and that
those outcomes are very consistent with viewers’ ratings of how
acceptable different views are.

• We develop a predictive model for perceptual distortions in street-
level IBR, and use it to present guidelines for acceptability of
novel views and capture camera density. We also perform a valida-
tion study of our predictions, and illustrate their use to guide users
of street-level IBR so that images of novel views are acceptable
during navigation.

2 Related Work

Perception of Artifacts in Image-based Rendering Texture
mapping has been widely used to represent surface color and
also shape details that are too small to model geometrically. An
example is projective texture mapping for urban visualizations
[Debevec et al. 1998]. In such cases, the shape details do not
change when the simulated (or virtual) viewpoint changes as they
would when changing viewpoint in the original scene; as a con-
sequence, the image becomes distorted. View-dependent texture
mapping [Debevec et al. 1998] and unstructured Lumigraph render-
ing [Buehler et al. 2001] provide ways to choose among or blend
between multiple textures that were captured from different view-
points. In practice, the texture viewpoints are not sampled densely,
so novel simulated viewpoints can still create image distortions –
angle distortions and blending artifacts – that are quite objectionable.

Previous work on the perception of image distortions in IBR
has focused on the transition artifacts that occur when the sim-
ulated viewpoint moves between input viewpoints. Occlusion
boundaries, particularly their synchronization with camera mo-
tion, are key determinants of the perceived quality of transitions
[Morvan and O’Sullivan 2009]. Transitions are more acceptable
when exact edge correspondences, coherent motion and homoge-
neous regions are provided [Stich et al. 2011]. Images for simulated

novel viewpoints are more acceptable when the transitions are faster,
there are fewer transition artifacts, and the distance to the view-
point of the used texture is small [Vangorp et al. 2011]. Geometric
distortions due to viewing distances inconsistent with the field of
view of the image have been studied in the context of traditional
rendering rather than IBR, confirming that observers make the most
accurate geometric estimates of the scene when they are close to the
consistent viewpoint [Steinicke et al. 2011].

Despite these advances in our understanding, previous work has
not provided an explanation of why some image distortions are
acceptable, while others are not. We claim that studies of human
picture perception provide data and concepts that prove to be useful
for a better implementation of street-level IBR systems.

Vision Science Literature on Picture Perception Pictures,
which are defined as 2D representations of 3D scenes based on
perspective projection, can yield compelling impressions of 3D
structure. To estimate 3D structure, humans use a variety of depth
cues that are potentially available in pictures: cues based on per-
spective, lighting, atmospheric effects, and triangulation. Here we
focus on perspective-based cues because they are most affected by
the image distortions that occur in street-level IBR.

Perspective-based cues can be used to determine the 3D layout
of a scene up to a scale factor. For instance, when a photograph
is taken of a slanted rectangle, the objectively parallel edges of
the rectangle are imaged as non-parallel. If one extends the lines
until they intersect at the vanishing point, the angle between a
line from the viewer to the vanishing point and a line from the
viewer to the rectangle specifies the slant and tilt of the rectangle
[Sedgwick 1991]. When a perspectively correct picture is viewed
from the COP, people are quite accurate at recovering the 3D geome-
try of the original scene, including the slants of surfaces in that scene
[Smith and Smith 1961, Cooper et al. 2012]. If the viewer’s eye is
offset from the COP, perspective-based cues no longer specify the
original 3D scene; instead, they specify a different, distorted scene.
Research in picture perception has been focused on how those dis-
tortions affect the perception of 3D shape, and puts forward the two
hypotheses defined in Sec. 1: the scene and retinal hypotheses. In
some situations, the experimental evidence favors the scene hypothe-
sis. For example, when viewers are left or right of the COP and view
the picture and its frame with both eyes, they compensate for their
incorrect viewing position and perceive 3D structure reasonably ac-
curately [Rosinski et al. 1980, Vishwanath et al. 2005]. Some have
claimed that this compensation is based on the use of familiar
shapes, such as cubes [Perkins 1972, Yang and Kubovy 1999] while
others have claimed that it is based on measurement of the ori-
entation of the surface of the picture [Wallach and Marshall 1986,
Vishwanath et al. 2005]. In other situations, the experimental ev-
idence favors the retinal hypothesis, even for small off-axis dis-
placements [Banks et al. 2009]. When the slant of a pictured ob-
ject is nearly perpendicular to the picture surface, little compensa-
tion for off-axis viewing occurs [Goldstein 1987, Todorović 2008].
When viewers are too close to or too far from the picture, they
do not compensate for the induced image distortions and therefore
perceive 3D structure incorrectly [Adams 1972, Cooper et al. 2012,
Lumsden 1983, Todorović 2009].

Thus the scene and retinal hypotheses account best for perceptual
outcomes in different situations. Our goal is to study how well these
hypotheses predict perceptual distortions in street-level IBR.

Street-level Image-based Viewing Another key goal is to use
our findings to provide practical guidelines in an application set-
ting. We will focus on a simplified image-based setup which is
akin to existing visualizations of street-level imagery, e.g., Google
Maps Street View™, Bing Maps Streetside™ and Mappy Urban
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Dive™. While exact details of these systems are not always avail-
able, they use panoramic images captured at discrete points along a
path, and rendered using the equivalent of view-dependent texture
mapping [Debevec et al. 1998] onto a single planar proxy for each
façade, or a similar technique. In most of these systems, transitions
between viewpoints occur as a fast blurred mix between the view-
points, possibly with a blending approach (e.g., akin to Buehler
et al. [2001]). Our analysis also applies to other types of street-
level IBR such as Microsoft Photosynth™ [Snavely et al. 2006],
Street Slide [Kopf et al. 2010], and even multi-perspective images
[Yu et al. 2010] as long as corners in façades are only deformed by
perspective projections and not by the image deformations applied
to align and stitch images into panoramas.

In this paper, we assume façades are captured in a similar manner:
using panoramas (or wide-angle images) at discrete points along a
path and reprojected onto a planar proxy for the façade and ground.

3 Extended Retinal Hypothesis

In this section, we describe an extended retinal hypothesis for street-
level IBR. In describing the hypothesis, we consider the viewing of
corners on building façades (e.g., corners of balconies). The result is
a prediction for the perceived angle of such corners. The four steps
involved in the process are:

1. Capture: Street-level panoramas (or photographs) are captured,
and camera positions and orientations are registered.

2. Projection: The captured imagery is mapped onto simplified
geometry, often only a ground plane and a few façade planes.

3. Simulation: This scene is visualized from the different view-
point of a virtual or simulation camera.

4. Display: The resulting image is presented on a display device
and viewed by the user.

As explained in Sec. 2, the retinal hypothesis states that the percep-
tual outcome is a direct interpretation of the retinal image without
compensation for possibly incorrect positions of the simulation cam-
era or viewer. Vanishing points are formed by extensions of edges in
the façade and the ground plane, and are used by viewers to estimate
the geometry.

To develop our extended retinal hypothesis, we derive the coordi-
nates of vanishing points for an arbitrary corner seen in the simu-
lation camera image (e.g., a balcony corner). This will allow us to
predict the angle perceived according to the projected retinal image.
We restrict our derivation and experiments to planar proxies and
box-like balconies. These are reasonable approximations for many
façades. We show in the validation study how our results can be
applied in other situations.

As sketched in Fig. 2, the capture camera coordinate system has
its origin at the camera’s nodal point (optical center), the x-axis
points to the right, the y-axis points up and the z-axis points forward.
The camera captures a façade with corners (in black). We use the
following two angles extensively: the eccentricity angle, denoted θe,
defined by the direction normal to the façade (in grey on the left) and
the line between the corner and the origin, and the simulation angle,
denoted θs, which is the angle between the normal direction and
the line between the simulation camera nodal point and the corner
(right). The left inset shows the image of a capture camera, while
the righthand two insets show simulation (virtual) images.

3.1 Capture

Consider a corner on the façade, with front and side faces (blue and
red in Fig. 3). The vanishing point of the front face of the corner is a
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Figure 2: Left: Top-view of capture camera and two eccentricity
angles, θ1e and θ2e . Right: two simulation cameras, their simulation
angles θ1s and θ2s , and corresponding virtual images. See how simu-
lation angle affects final image quality. Depending on which corner
we look at, eccentricity also affects distortion.

point with parameter t that runs to infinity on the façade, to the side
that the simulation camera will be turned:

xc = − sign θs · lim
t→∞

t, yc = 0, zc = c, (1)

where c is the capture z-distance from the corner to origin. We
maintain the limit notation to later differentiate cases occurring in
the capture and simulation projections.

The vanishing point of the side face of the corner is similarly defined
as a point with parameter t that runs to infinity on that side away
from the camera:

xc = c · tan θe, yc = 0, zc = lim
t→∞

t. (2)

The image plane of the capture camera is a frontoparallel plane at fo-
cal length fc in front of the nodal point. After perspective projection,
the vanishing points are on the image plane, at coordinates x′

c, y
′

c:

x′

c = fc · xc/zc, y′

c = fc · yc/zc. (3)

We now derive the capture-camera image-space coordinates for the
vanishing points of the two faces. For the front face:

x′

c = − sign θs · lim
t→∞

t, y′

c = 0. (4)

Note that x′

c = ±∞ if the façade is frontoparallel to the capture
camera. For the side face:

x′

c = 0, y′

c = 0. (5)

The insets of Fig. 3 (left) illustrate this step.

3.2 Projection

The projection step in the IBR pipeline consists of reprojecting the
panorama onto a planar proxy. Assume that the planar proxy is
at distance c; to project the image onto it, we replace the capture
camera with a projector at the same position, orientation and focal
length fc. The projector coordinate system is the same as the capture
camera coordinate system. The effect on vanishing point coordinates
is simply to set the coordinate zc to c. Projected camera coordinates
of the vanishing points for the front face are:

xc = − sign θs · lim
t→∞

t, yc = 0, zc = c (6)

and for the side face: xc = 0, yc = 0, zc = c.
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Figure 3: Left: Top view of capture camera geometry; the insets show the vanishing points (VPs) as seen in the screen for front and side of
balcony. Middle: Top view of simulation camera geometry: again insets show vanishing points. Right: Top view of display geometry.

3.3 Simulation

We assume that the simulation camera points straight at the corner
with eccentricity angle θe, from a distance d and simulation angle θs
(Fig. 3, center). We transform the vanishing points to the simulation
camera coordinate system and then perform perspective projection
of the simulation camera (i.e., the IBR itself), with focal length fs.
This transformation and the coordinates x′

s and y′

s of the vanishing
points in simulation camera coordinates after perspective projection
are derived in the supplemental material. These coordinates are:

Front:

x′

s = fs
− sign θs · limt→∞ t · cos θs
sign θs · limt→∞ t · sin θs + d

(7)

=

{

± lim
t→∞

t if θs = 0

−fs/ tan θs otherwise
(8)

y′

s = 0 (9)

Side:
x′

s = fs
− tan θe · cos θs
tan θe · sin θs + 1

, y′

s = 0. (10)

The image size at this point depends on the focal length fs. In a real
camera, the image size is the sensor size.

3.4 Display

The actual display occurs on a physical display device, such as a
computer monitor, tablet or phone. We model this by magnifying the
image from sensor size to display size by the factor M . The viewer
sits straight in front of the display at a viewing distance v; see Fig. 3
(right). The transformation from projected simulation coordinates to
viewing coordinates is simply:

xv = M · x′

s, yv = M · y′

s, zv = v. (11)

3.5 Predicted Perceived Angle

We now have all the elements needed to compute the angle the viewer
will perceive according to the extended retinal hypothesis. In partic-
ular, as explained by the vision literature (e.g. Sedgwick [1991]), the
perceived total angle is the angle between the lines from the viewer
position (at the origin of the viewer coordinate system) to the front
and side vanishing points; see Fig. 3 (right). The angle formed by
connecting a viewpoint to these two vanishing points is assumed to
be the same for any viewpoint, because this is true by definition for

veridical vanishing points. Specifically:

αfront = arctan |xv,front|/zv,front (12)

=







90° if θs = 0

arctan
M · fs

v · tan |θs|
otherwise

(13)

αside = arctan |xv,side|/zv,side (14)

= arctan

(

M · fs
v

·

∣

∣

∣

∣

c · tan θe · cos θs
c · tan θe · sin θs + d

∣

∣

∣

∣

)

. (15)

If θe and θs have opposite signs, the perceived angle is:

αtotal = αfront + αside. (16)

If θe and θs have the same sign, the perceived angle is αtotal =
180° − αfront + αside.

Both faces of a corner must be visible for observers to make informed
angle judgments. A discontinuity arises at eccentricity angle θe = 0
because the side face of the corner flips between facing left and
facing right.

4 Experimental Design

We conducted two psychophysical experiments to determine how
the image distortions in typical street-level IBR applications are
perceived:

1. An angle-matching experiment that tested the predictions of the
scene and extended retinal hypothesis. The results allow us to
predict the magnitude of perceived distortions in novel scenes.

2. A rating experiment that determined the subjective acceptability
of angle distortions. The results allow us to determine which
perceived angle distortions are acceptable and which are not; we
will use this subsequently for our guidelines (Sec. 8).

For certain applications (e.g., navigation or sightseeing), one may be
interested in the overall perception of shape. Since shapes involve
many angles and different contextual priors, we believe it is likely
to lead to more acceptable perceived distortions. We opted to study
angles, which is a stricter criterion with a clear quantitative task, used
before by Watt et al. [2005]. An analogous quantitative experiment
for shape perception would not be possible.

4.1 Stimuli

We simulated the typical unstructured lumigraph workflow in a
fully synthetic, offline rendering pipeline to maximize control and
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Figure 4: Example stimuli. Left: The corner in the center looks
undistorted. Right: the corner looks like an obtuse angle. The corners
participants are asked to look at are indicated by the crosshairs (or
by a blinking red dot in the experiment).

image quality. Synthetic stimuli allow us to create depth variations
of the same façade, and to specify exact and consistent values for
eccentricities and capture camera positions across different façades,
as well as to create images without clutter (e.g., cars, lamp posts,
trees), and avoiding the presence of other cues in the stimuli.

Three façades (Figs. 4 and 5) were created with 90° convex corners
at eccentricity angles of θe = ±7.1° and ±32.0°. Three balcony
depths were created for each façade: the distances from the front to
the back of the balconies were 0.33, 0.67, and 1 m. The façades were
lit by a sun and sky illumination model to create realistic images.

The stimulus images were created using the PBRT offline renderer
[Pharr and Humphreys 2010] with high-quality parameters. A wide-
angle frontoparallel image of three realistic façades was rendered
from a distance of 40 m. The resulting images were then projected
onto a single plane. Details are provided in the supplemental material.
The same stimuli were used for both experiments. Fig. 5 provides
an overview of the stimulus creation parameters.

4.2 Hypotheses

The extended retinal hypothesis (Eq. 16) can be used to predict the
perceived angle of corners in our stimuli. Fig. 7(a) shows the ex-
tended retinal hypothesis prediction for the viewer at the center of
projection. The angle perceived when viewing a 90° corner is plotted
as a function of simulation angle. Different colored lines represent
the predictions for different eccentricity angles. Each corner has a
constant eccentricity angle in a given captured image: e.g., the corner
on the left in Fig. 5 has a negative eccentricity angle θe = −32◦

relative to the blue capture camera at the bottom, so it is represented
by the dark blue line in Fig. 7(a). As the simulation camera shown
in green rotates around that corner from left to right, the simulation
angle θs increases and the predicted perceived angle gradually de-
creases towards the correct value. When the eccentricity angle is
positive, the predicted perceived corner angle increases with increas-
ing simulation angle. Thus, the extended retinal hypothesis predicts
a two-way interaction between simulation angle and eccentricity
angle.

4.3 Experimental Setup

We used four types of displays that differed substantially in size:
screen diagonals ranged from 3.5” to 55”. Cooper et al. [2012] found
that users have fairly consistent preferred distances for viewing
photographic prints of different sizes, given by

viewing distance = 1.3 · image diagonal + 253mm. (17)

We assume the same formula applies for viewing display devices,
so we used it to determine the viewer’s distance from each device.
The devices were held upright (PC, TV) or at an angle of about 45°
(phone, tablet) by fixed stands, and the viewer was positioned at the
specified distance. More details of the experiment implementation
are in the supplemental material and the video.

c = 40 m

capture camerasimulation cameras
θ

s
 = -30º, -15º, 0º, 15º, 30º

eccentricity angles θ
e
 = -32.0º, -7.1º, 7.1º, 32.0º

d = 40 m

Figure 5: Wide-angle image (cropped) from the capture camera (op-
tical axis in blue, corners in red), and stimulus creation parameters.

4.4 Participants

It is common practice in vision science to use a relatively small
number of participants who are tested quite extensively (e.g., Ernst
and Banks [2002]). We followed this practice by testing six partici-
pants extensively (on average 7.5 h for a total of 3072 measurements
each). In so doing, we were able to test many experimental con-
ditions and thereby put the hypotheses to rigorous test. The six
participants were 20–32 years old; three were female. They all had
normal or corrected-to-normal vision, and were paid for their par-
ticipation. They all participated in both experiments and were naı̈ve
about the experimental hypotheses. The tasks in these experiments
are quite involved, so we needed to ensure that participants under-
stood the instructions, and that they could give reasonably consistent
responses. To do this, candidates passed a pre-test, and only those
satisfying comprehension and consistency requirements were invited
to perform the entire test. Details of this pre-test are given in the
supplementary material.

4.5 Experimental Procedure

In both experiments, all stimuli – five simulation angles, four ec-
centricity angles and three façades, each with three balcony depths
– were presented twice. In addition, three particular stimuli were
presented eight times to allow us to assess the consistency of re-
sponses. Thus, there were 384 stimulus presentations for each of
the four display device types in each experiment. The order of stim-
uli presented was randomized. In addition, we used within-subject
counterbalancing. There were two experiments (hinge setting and
rating) and four devices, giving eight conditions. We further split
these each into three parts, giving 24 parts. These 24 parts were
randomized and split into separate sessions – usually four 2-hour
sessions. Participants took breaks whenever they needed. At the start
of each part, participants were given extensive instructions. They
were shown examples of stimuli without angle distortions and with
extreme angle distortions (Fig. 4).

5 Experiment 1: Hinge Angle Matching

The first experiment determined how a 90° corner is perceived after
it undergoes distortion due to the position of the simulation camera.
Participants indicated the perceived angle of a corner by setting a
real convex hinge to look the same (see Figure 6). We used a real
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Figure 6: The hinge device (left) and our experimental setup (right).

Source df SS MS F p Sig η2

G

Display Device (Dev) 3 3572 1191 7.939 0.0021 ⋆ 0.105

Simulation Angle (Sim) 4 777.6 194.40 7.102 0.000995 ⋆ 0.024

Eccentricity Angle (Ecc) 3 56020 18673 50.05 4.78e-08 ⋆ 0.648

Façade Depth (Dep) 2 18788 9394 61.84 2.34e-06 ⋆ 0.382

Dev×Sim 12 56.3 4.692 0.551 0.872 0.001

Dev×Ecc 9 462.5 51.39 1.362 0.234 0.014

Dev×Dep 6 209.0 34.83 1.647 0.169 0.006

Sim×Ecc 12 17339 1444.9 11.39 1.92e-11 ⋆ 0.363

Sim×Dep 8 110.9 13.87 1.228 0.308 0.003

Ecc×Dep 6 2594 432.4 9.135 1.03e-05 ⋆ 0.078

Dev×Sim×Ecc 36 683.2 18.98 2.142 0.000592 ⋆ 0.022

Dev×Sim×Dep 24 174.7 7.281 0.884 0.622 0.005

Dev×Ecc×Dep 18 428.3 23.80 1.933 0.0225 ⋆ 0.014

Sim×Ecc×Dep 24 436 18.17 1.745 0.0268 ⋆ 0.014

Dev×Sim×Ecc×Dep 72 785 10.899 1.224 0.121 0.025

Table 1: Results of our repeated-measures ANOVA on the hinge data.
The columns list: sources of variance, their degrees of freedom (df),
sum of squares (SS), mean square (MS), F -statistic, p-value, signif-
icance code for α = 0.05, where ∗ means the factor is significant
and generalized η2 effect size.

hinge, similar to Watt et al. [2005], because images of a hinge may
themselves be affected by perceptual distortions.

Participants were shown images from our pool of stimuli (Sec. 4.1)
in random order. The intended corner, which was always in the center
of the image, was briefly indicated by a blinking dot. Participants
then rotated the hinge device about the vertical axis until the slant
of one side of the hinge appeared to match the side of the corner in
the image. They then opened or closed the hinge until the perceived
angles of the hinge and corner were equal. They pressed a keyboard
button to indicate that they were satisfied with the setting, the setting
was recorded, and the experiment proceeded to the next trial. This
procedure is illustrated in the accompanying video.

5.1 Results and Discussion

The angle-matching experiment took 4.3 hours on average to com-
plete, or about 10 seconds per trial. We used the eight repeated pre-
sentations of three stimuli to assess response consistency. Those data
showed that participants were self-consistent (average standard devi-
ation within-subjects was 5.3°). The data from different participants
were also quite similar (average standard deviation between-subjects
was 8.7°), so we averaged across participants to create the data
figures shown here. Similarly, we did not observe systematic differ-
ences across display devices (average standard deviation between
devices was 6.3°), so we averaged over devices. See supplementary
material for the data from individual participants and devices.

Figure 7 shows the predicted (a), and observed (b–e) hinge angle
settings. Each panel plots angle setting as a function of simulation
angle; different colored lines represent different eccentricity angles.
The colored lines in panel (a) represent the predictions for the ex-

tended retinal hypothesis and the horizontal dotted lines at 90° the
predictions for the scene hypothesis. The results are qualitatively
quite similar to the predictions of the extended retinal hypothesis. For
positive eccentricity angles, the extended retinal hypothesis predicts
that increases in simulation angle will yield increases in perceived
angle. For negative eccentricity, the prediction is the opposite. All of
the data are consistent with those predictions. However, the range of
perceived angles is more compressed than predicted by the retinal
hypothesis, which suggests an influence of the scene hypothesis.
This partial influence of the scene hypothesis is greater for small
façade depths (Figure 7, b–d).

To determine which effects are statistically significant, we performed
a repeated-measures analysis of variance (ANOVA) on the data with
simulation angle, eccentricity angle, display device and façade depth
as factors. The results are shown in Table 1. There were statistically
significant main effects of all factors, but only eccentricity angle
and façade depth have a large enough effect size (η2

G > 0.26) to
result in noticeable differences in perceived angle [Bakeman 2005].
There was also a significant and large two-way interaction between
simulation angle and eccentricity angle, as predicted by the retinal
hypothesis.

The main effect of façade depth reflects the fact that shallower
façades tend to be perceived as having smaller angle deviations
than deeper façades as can clearly be seen in Fig. 7 (b–d). This is
because deeper façades reduce the uncertainty in the retinal angle
cues, allowing the retinal hypothesis to dominate more strongly
over the scene hypothesis. Previous work has demonstrated that the
perceived distortions do not become more objectionable with even
greater depths [Vangorp et al. 2011].

The retinal hypothesis predicts that perceived angles deviate more
from 90° as the simulation camera moves laterally from the capture
position (see Fig. 2, top center); i.e., it predicts greater perceived
angles when the simulation and eccentricity angles are large and
have the same sign.

In a follow-up experiment, we presented stimuli created from real
photographs in the same experimental setting. Five out of the 6
original participants were available for this follow-up experiment.
We used the PC display only. The follow-up data with real images
(available in the supplemental material) were very similar to the data
with synthetic images. This validates our use of synthetic stimuli in
the main experiment.

The retinal hypothesis (Eqs. 12–16) predicts different results for
the different devices because the viewing distances relative to the
COP differed across devices. But we did not observe systematic
differences across devices (see data in supplemental material). Our
explanation for the lack of a device effect is that the effect of distance
from the COP is overshadowed by the compression towards 90°
due to the familiarity of cube-like shapes [Yang and Kubovy 1999,
Perkins 1972]. For this reason, Fig. 7 (a) plots the predictions of the
retinal hypothesis with the viewer at the COP.

6 Experiment 2: Angle Rating

The second experiment was designed to determine the acceptabil-
ity of various angle distortions. We asked participants to indicate
how acceptable a given corner was as a simulation of a 90° corner.
Participants were shown the same images as in Experiment 1, again
in random order. They rated how close the indicated corner in each
image looked to a right angle on a 5-point scale where 1 to 5 corre-
sponded to “perfect”, “close enough”, “kind of”, “not really”, and
“no way!”. Participants entered each rating using a numerical keypad
and confirmed the entry by pressing “Enter” (see Fig. 8). The next
stimulus then appeared and the process repeated.
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Figure 8: Rating screens on the phone (left) and TV (right).

Source df χ2 p Sig W

Display Device 3 8.40 0.0384 0.467

Simulation Angle 4 9.73 0.0452 0.406

Eccentricity Angle 3 10.2 0.0169 0.567

Façade Depth 2 10.3 0.0057 ⋆ 0.861

Table 2: Results of our four separate repeated-measures Friedman
tests on the angle-rating data. The columns list: sources of variance,
their degrees of freedom (df), χ2-statistic, p-value, significance code
for the Bonferroni-corrected significance level α = 0.0125, and
Kendall’s coefficient of concordance W indicating effect size.

In a brief training session, we encouraged participants to use the
full range of the scale and to distribute their responses uniformly. In
the instructions, we showed examples with “almost no” and “severe”
angle distortions to help them understand the scale, but to avoid bias
we did not tell them which ratings to assign for those stimuli.

6.1 Results

Medians of ratings on a 5-point scale are not very informative, so
we use interpolated medians [Revelle 2008]. This summary statistic
only assumes equal distances between the levels and uniformly
distributed observations within the levels [Zar 2010], which are
weaker assumptions than the ones required for computing means.

The rating experiment took on average 3.1 hours to complete on all
four display conditions, or 8 seconds per trial. The within-subject
reliability of ratings is again fairly good over time, with a quartile
variation coefficient of less than 0.65 for all participants and devices.
As is common with rating scales, some participants gave higher
or lower ratings overall than others. This does not pose a problem,
however, because all participants encountered all conditions, so we
could assess the effects of interest uncontaminated by differences in
overall ratings.

To determine which effects are statistically significant, we performed
repeated-measures Friedman tests on the ratings separately for the
factors simulation angle, eccentricity angle, display device, and
façade depth. The results are shown in Table 2. There was only a
statistically significant main effect of façade depth with a large effect
size (W >0.5).
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Figure 9: Rating results showing interpolated medians across all
participants: (a) across all façade depths, and (b–d) ratings for
different façade depths.

Figure 9 shows the results across participants. In each panel the ab-
scissa and ordinate are respectively simulation angle and eccentricity
angle, and colors represent different interpolated medians of ratings.
The upper left panel shows the data across façade depths. The most
unacceptable stimuli were in the lower left and upper right corners
of these plots. Those stimuli have large simulation and eccentricity
angles of the same sign. The most acceptable stimuli were in the
middle of the plot – where the simulation and eccentricity angles
are small in magnitude – and the upper left and lower right where
the large simulation and eccentricity angles are opposite in sign. A
comparison with Figure 7 shows that the most unacceptable stimuli
were generally those that had perceived angles most different from
90°. The other three panels show the data for different façade depths.
The largest and most systematic effects were observed for the largest
depth. In supplemental material are the plots for different devices,
which show that the ratings are quite consistent across display de-
vices. We also performed a follow-up experiment with real stimuli,
which were consistent with the synthetic data; results are in the
supplemental material.

7 A Predictive Model for Perspective

Distortion in Street-Level IBR

Our primary goal is to develop a predictive model of perspective
distortion based on existing hypotheses and our experimental results.
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The results of the angle-matching experiment fell in-between the
predictions of the retinal and scene hypotheses: i.e., as predicted by
the retinal hypothesis, corners were often perceived as specifying
angles different than 90°, but those perceived angles were closer
to 90° than predicted by that hypothesis. We did not observe the
significant effect of display device that was predicted by the ex-
tended retinal hypothesis. Previous work suggests that observers
perceive less image distortion in images of familiar or cube-like
shapes [Yang and Kubovy 1999, Perkins 1972]. However, the depth
of the façade affected the results, with greater depths yielding results
closer to the retinal hypothesis. A useful predictive model must in-
corporate these effects. To create such a model, we found best-fitting
weights for the retinal and scene predictions for each depth value.
The linear contribution of depth value is given by:

fall-off(depth) =











y0 if depth < depth
0

y1 if depth > depth
1

y0 + (y1 − y0) ·
depth−depth

0

depth
1
−depth

0

otherwise.

(18)

where 0<depth
0
<depth

1
and 0<y0<y1<1 are fitted to the data

such that the prediction is not forced to follow the scene hypothesis
completely at depth = 0 or the retinal hypothesis at large depth.

The corner angle α predicted by the model then becomes:

α = αtotal · fall-off(depth) + 90° · (1− fall-off(depth)) , (19)

where αtotal is defined in Eq. 16. In Figure 10, (a) plots the predictions
of our model and (b) shows the experimental results for comparison.
The fit to the angle measurement data can be improved by taking
into account a “flattening” effect due to other cues (see supplemental
material), but we did not adopt it because it adversely affects rating
predictions, which are more important for applications (Section 8).

8 Guidelines for Street-Level IBR

Our experiments provide a wealth of data that can be used to predict
distortions and provide guidelines for street-level IBR. We now in-
vestigate the correlation between perceived angles and ratings, and
show that it allows us to develop a predictor of distortion accept-
ability. We then discuss how our experimental results provide two
guidelines for street-level IBR: how to use the predictor for IBR and
how to specify capture positions to minimize distortion. For both
guidelines, the position and orientation of a novel simulation camera
must first be converted to the parameters θs, θe and d used in our
predictive model (see supplemental material).
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Figure 11: The best piecewise-linear fit from perceived angles, as
predicted by our model, to the ratings in our experiment. Each circle
indicates an interpolated median rating for all stimuli with a given
predicted angle. Error bars are quartiles. The best piecewise-linear
fit to all data points (Eq. 20) is overlaid as solid lines.

8.1 Relating Angle Measurements and Ratings

We use the results of our experiments to determine the amount of per-
ceptual distortion that should be considered acceptable in real-world
applications. The data of the angle-matching and rating experiments
are generally consistent with one another. This is evident from Fig-
ure 12: (a) shows the deviation of perceived angle from 90° and (b)
shows the ratings for the same stimuli. The plots are qualitatively
quite similar.

Figure 11 shows the consistency in another way by plotting observed
ratings as a function of the predicted perceived angle. As expected,
the lowest (most acceptable) ratings are close to 90° and the ratings
increase (become less acceptable) for greater and smaller angles. We
fit a piecewise-linear function to this plot (represented by lines in
the figure) and use this function to predict ratings from predicted
perceived angles:

rating(α) =

{

2.05 + 0.12 · (α− 93.0°)/° if α ≥ 93.0°

2.05− 0.08 · (α− 93.0°)/° if α ≤ 93.0°,

(20)
clamped to the range [1, 5] used in the experiment.

8.2 Predicting Ratings in Novel Conditions

Naturally, we wanted to predict ratings at eccentricity and simula-
tion angles that were not sampled in our experiments. Given the
symmetry in the results of both experiments, we combined the data
from the appropriate conditions (simulation and eccentricity angle
both inverted) to obtain symmetric predictions with even lower vari-
ance. The experimental rating data could be interpolated directly
(Fig. 12, b) or the perceived angle data could be interpolated and
then mapped to ratings (Fig. 12, a). However, both approaches are
limited to the range of simulation and eccentricity angles sampled
in our experiments, and larger angles can occur in street-level IBR.
Therefore, we used Equation 20 to expand perceived angle predic-
tions to ±60° (Fig. 12, d). The discontinuity at θe=0° is preserved
in this procedure.

8.3 Guidelines for Capture and Display

For novel camera positions and orientations that might occur in
street-level IBR, we first convert to θe and θs, and then look up
the rating from Fig. 12 (d). We describe the look-up procedure in
supplemental material. In Sec. 9 we show how predictions for novel
positions and orientations are used in a street-level IBR application.
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We want to determine how positioning of the simulation camera
affects the acceptability of the resulting images. The left side of
Fig. 13 plots predicted acceptability for various camera positions
and orientations relative to a façade with large depth range. In each
panel, the capture camera (represented by a black icon) is facing the
façade directly at a distance c of 10 m. The abscissa of each panel
is the horizontal position of the simulation camera relative to the
capture camera and the ordinate is the distance of the simulation
camera to the façade. Different camera orientations are shown in
different panels: θs is 0°, 15° and 30° from top to bottom. High and
low acceptability is represented by blue and red, respectively. These
plots were derived in part from Fig. 12: a column at the appropriate
simulation angle in Fig. 12 (d) maps to a row in Fig. 13 for a
simulation distance equal to the capture distance. These plots show
how one can position the simulation camera to maintain acceptable
imagery. The acceptable region does not vary much with simulation
angle and it narrows as the simulation camera gets closer to the
façade. The eccentricity and simulation angles are roughly opposite
to one another in the acceptable zone.

The right side of Fig. 13 provides insight into how the density of
capture cameras affects image acceptability for various simulation
camera positions. The abscissas and ordinates of these panels are the
same as those on the left side. The simulation angle θs is now always
0°. From the upper to lower panel, the capture cameras (black icons)
have been positioned laterally at intervals of c, c/2, and c/4. As one
can see, the density of capture cameras has predictable effects on the
acceptability of the resulting images for a wide range of simulation
camera positions. Our analysis, therefore, provides a principled
method for determining how many captures are required for a given
street scene and set of navigation paths. If the capture cameras are
spaced out by distance c, getting from the region covered by one
camera to the region covered by the next involves moving through
regions of large distortion (yellow or red). An inter-camera distance
of c/4 (third row) results in large regions of low predicted distortion,
which is probably sufficient for street-level IBR.

9 Validation and Application

We developed a prototype interface for street-level IBR that uses
the predictions described in the previous section. We first use this
implementation to visualize the quality of a given path, and perform
a study to validate our predictions. We then develop an application
that guides users to stay in zones of acceptable quality.

θs = 0° 

Single Capture 
Camera

Varying Distance Between
Capture Cameras

c

c/2

c/4

c = 10 m

θs = 15° 

θs = 30° 

Figure 13: Left: How simulation camera position and orientation
affect predicted image acceptability. Each panel is a top view of
acceptability as a function of the lateral position and distance of the
simulation camera. From top to bottom, θs is 0°, 15° and 30°. Right:
How positioning of capture cameras affects image acceptability.
θs = 0°. From top to bottom, capture cameras are positioned at
intervals of c, c/2, and c/4.

Visualization Our implementation reads a set of cameras regis-
tered using structure-from-motion [Snavely et al. 2006]. We assume
that the cameras are directly facing the façade (i.e., a side camera in
a commercial “capture car” for such applications). We fit a plane to
the reconstruction which serves as the proxy for the façade.

We designed navigation paths in our interface, visualizing the pre-
dicted quality during the process. This is illustrated in Fig. 14. The
interface shows the current simulated view and the inset shows a
top view of the navigation path. The navigation path is color coded
using the heat map of Fig. 12 (d) to show the predicted ratings. The
accompanying video provides an animated example of navigation
along the path.

While using our interface we noticed one significant temporal effect:
motions along a path on which the perceived angle changes quickly
are quite disconcerting. We can use our heat map of predicted angles
to predict such paths in order to avoid them during navigation.
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Figure 14: Simulated views along a navigation path (see inset).
The heat map of predicted ratings of Fig. 12 (d) is used as the color
scheme to visualize predicted quality along the path. The view shown
here is predicted to be bad, as indicated by the red line-of-sight in
the inset (labeled ‘S’). The capture camera is indicated by ‘C’.

Validation User Study To evaluate our predictions, we employed
this interface in a user study. The goal of the study was to determine
how well our predictions agree with user observations in a situation
quite similar to street-level IBR: a navigation path with real stimuli.
We used three datasets corresponding to the different scenes in
Figures 1, 2 and 14. For each scene we provide three different paths:
one path was predicted to be low quality (rating of 3–3.5), one
medium quality (2.5–3), and one high quality (2–2.5). We created
a web page with pre-recorded videos of each path. We instructed
participants to look at a specific corner when it appeared in the
middle of the screen (indicated by a red dot). Participants then rated
the perceived distortion in the same manner as for Experiment 2:
i.e., “how close to 90° does the angle look?”. They chose a value
on the same five-point scale (Sec. 6) for a total of nine paths (three
paths for three scenes). The three videos of a scene were presented
on a single page, and participants were asked to adjust their relative
ratings between the three videos. This procedure is illustrated in the
accompanying video. 91 people performed the study on their own
computer screens. The results are summarized in Fig. 15, which plots
observed ratings as a function of predicted ratings separately for the
three scenes. The correlation between predicted and observed ratings
was moderate (r > 0.5) for the first two scenes and strong (r > 0.8)
for the third. Thus, the predictions were reasonably good despite
the many differences between the experiments used to generate the
predictions (static scenes with well controlled conditions) and this
user study (unstructured dynamic scenes).
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Figure 15: Interpolated medians and quartiles for the three scenes
used in the validation user study.

Application We also developed an interactive application based
on this implementation, illustrated in Fig. 16. The interface shows
the simulated view and a top view of the scenario in the inset. The
user starts viewing at a particular position, and then translates and/or

(a) (b)C C

S S

Figure 16: Interactive navigation tool. (a) When the user translates,
the inset shows predicted ratings for all camera positions keeping
the orientation fixed. (b) When the user turns, the inset shows ratings
for all possible camera orientations keeping the position fixed. The
application restricts the user’s motion to regions with acceptable
predicted quality. Capture camera is indicated by ‘C’ and simulation
camera is indicated by ‘S’ in the insets.

rotates. If the user is translating (Fig. 16, a), the inset shows predicted
ratings for all camera positions while keeping the same camera orien-
tation. Fig. 13 (left) shows a similar visualization for three particular
simulation angles. When the user turns (Fig. 16, b), the visualization
shows ratings for all camera orientations keeping the camera posi-
tion fixed. The user can translate and turn as they wish as long as
they stay within the zone of “acceptable” quality. The application
prevents the user from reaching a camera position or orientation that
corresponds to a predicted rating higher than a threshold, and instead
shows a blinking placeholder at the current camera position. This is
illustrated in the accompanying video. We used a rating value of 3
as the threshold.

10 Discussion and Conclusion

In this work, we extended the retinal hypothesis from the vision
science literature so that it could be applied to viewing façades in
street-level IBR. We then performed an angle-matching experiment
to measure the perceptual distortions that occur in such systems,
which showed that perceived distortions are in between the compet-
ing retinal and scene hypotheses – depending on the façade depth.
We also performed a rating experiment to determine the acceptability
of the distortions measured in the first experiment.

We fit analytic functions to the perceived-angle data in order to create
a predictive model of perceptual distortions in street-level IBR. By
correlating the model to the rating data, we can predict the accept-
ability of different distortions. From this, we developed guidelines
for acceptable navigation regions and capture positions for street-
level IBR. Finally, we developed an application that predicts the
quality associated with different navigation paths, and performed a
confirmatory study that showed that our results generalize to realistic
navigation systems.

In future work, we wish to extend our approach to more sophisticated
IBR algorithms, e.g., to evaluate the usefulness of using more com-
plex proxies for scene geometry. Our study is currently limited to
the axis-aligned geometry of typical façades to keep the complexity
under control. However, all geometry and viewing restrictions can
be addressed by deriving the appropriate extended retinal hypothesis
and predictive model from first principles as demonstrated in Sec. 3
and 7.

A very fruitful aspect of this project is the methodology we de-
veloped. We started with a common observation: our tolerance to
changes in viewing angle when looking at texture-mapped façades.
Vision science provided well-founded explanations of the processes
underlying this phenomenon, but did not provide a directly appli-
cable model. However, methodologies and geometric tools from
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vision science allowed us to develop our extended hypothesis, and
to design and run our experiments. In addition, we were able to
develop useful applications of the theory and experimental results.
We firmly believe that this geometric and experimental framework
provides a solid basis for studying perception of IBR in more
general settings, such as stereo viewing, and even transition arti-
facts that have recently drawn attention in the graphics commu-
nity [Morvan and O’Sullivan 2009, Stich et al. 2011].
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